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INTRODUCTION

The STS-78 Space Shuttle Program Mission Report summarizes the Payload
activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB),
Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine
(SSME) systems performance during the seventy-eighth flight of the Space Shuttle
Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the
Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of
an ET that was designated ET-79; three SSMEs that were designated as serial
numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two
SRBs that were designated BI-081. The RSRMs, designated RSRM-55, were
installed in each SRB and the individual RSRMs were designated as 360L055A for
the left SRB, and 360L055B for the right SRB.

The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle
Program requirement as documented in NSTS 07700, Volume VIi, Appendix E.
The requirement stated in that document is that each organizational element
supporting the Program will report the results of their hardware (and software)
evaluation and mission performance plus identify all related in-flight anomalies.

The primary objective of this flight was to successfully perform the planned
operations of the Life and Microgravity Spacelab experiments. The secondary
objectives of this flight were to complete the operations of the Orbital Acceleration
Research Experiment (OARE), Biological Research in Canister Unit-Block Il
(BRIC), and the Shuttle Amateur Radio Experiment lI-Configuration C (SAREX-Il).

The STS-78 mission was planned as a 16-day, plus one day flight plus two
contingency days, which were available for weather avoidance or Orbiter
contingency operations. The sequence of events for the STS-78 mission is shown
in Table |, and the Space Shuttle Vehicle Management Office Problem Tracking
List is shown in Table Il. The Government Furnished Equipment/Flight Crew
Equipment (GFE/FCE) Problem Tracking List is shown in Table Ill. The Marshall
Space Flight Center (MSFC) Problem Tracking List is shown in Table IV.
Appendix A lists the sources of data, both formal and informal, that were used to
prepare this report. Appendix B provides the definition of acronyms and
abbreviations used throughout the report. All times during the flight are given in
Greenwich mean time (G.m.t.) and mission elapsed time (MET).

The seven-person crew for STS-78 consisted of Terence T. Hendricks, Col., U. S.
Air Force, Commander; Kevin R. Kregel, Civilian, Pilot; Richard M. Linnehan,
Civilian, DVM, Mission Specialist 1; Susan J. Helms, Lt. Col., U. S. Air Force,
Payload Commander, Flight Engineer, and Mission Specialist 2; Charles E. Brady,
Jr., CDR, U. S. Navy, Mission Specialist 3; Jean-Jacques Favier, Civilian, Ph. D.,
(French Space Agency,) Payload Specialist 1; and Robert Brent Thirsk, Civilian,
M. D., (Canadian Space Agency,) Payload Specialist 2. STS-78 was the fourth
flight for the Commander; the third space flight for Mission Specialist 2; the second



space flight for the Pilot; and the first space flight for Mission Specialist 1, Mission
Specialist 3, Payload Specialist 1, and Payload Specialist 2.



MISSION SUMMARY

The STS-78 countdown proceeded nominally with no unplanned holds, and the
vehicle was launched on-time at 172:14:49:00.019 G.m.t. (8:49 a.m. c.d.t.) on
June 20, 1996. No Orbiter problems were noted during the countdown. The
ascent phase was nominal, and the vehicle was inserted into the planned orbit
having an inclination of 39 degrees.

A determination of vehicle performance was made using vehicle acceleration and
preflight propulsion prediction data. From these data, the average flight-derived
engine specific impulse (Isp) determined for the period between SRB separation
and start of 3-g throttling was 453.57 seconds as compared to an SSME tag value
of 453.05 seconds. All SSME and RSRM start sequences occurred as planned;
however, SSME 3 (S/N 2036) violated the thrust buildup rate during the engine-
start sequence (Flight Problem STS-78-E-01). The SSME anomaly did not impact
the ascent phase, and the ascent phase performance was satisfactory. First stage
ascent performance was nominal with SRB separation, entry, deceleration, and
water impact occurring as expected. Performance of the SSMEs, ET and main
propulsion systems was nominal.

Both SRBs were recovered and returned to KSC for disassembly and
refurbishment. During the disassembly activities, it was noted that all six field
joints exhibited some degree of sooting in the J-leg insulation region. Heavy
sooting and heat effects (discoloration and charring) were observed on the J-leg
insulation interfaces in the center (left-hand and right-hand) and aft (left-hand and
right-hand) field joints (Flight Problem STS-78-M-01).

Postflight reconstruction indicated that there was less LHz and more LO.
remaining than predicted preflight. The data indicate a potential mixture-ratio
problem (Flight Problem STS-78-1-01). A review of the mixture ratio from the
previous 11 flights shows the trend to be biased low with the STS-78 mixture ratio
being 3o low.

At approximately 172:14:54 G.m.t. (00:00:05 MET), a built-in test equipment
(BITE) bit was set on multiplexer-demultiplexer (MDM) flight critical aft (FA) 1 card
14. This bit is indicative of a problem in the analog-to-digital (A/D) converter in the
sequence control unit (SCU) or a problem in card 14. However, simultaneous with
this BITE, the SSME 1 liquid hydrogen (LH,) inlet pressure failed off-scale high
(OSH). This pressure measurement is channelized through card 14 (channel 16).
Analysis of the BITE logic indicates that an OSH voltage from this sensor will
cause the BITE indication on MDM FA 1. Thus, this BITE is an explained
condition. Postflight testing confirmed that the LH, inlet pressure transducer had
failed. The transducer was removed and replaced.

During ascent, the flash evaporator system (FES) high-load duct temperatures
were erratic and lower than normal (Flight Problem STS-78-V-02). The inboard
duct temperature dropped to approximately 119 °F (normally remains above



190 °F) by 172:15:02 G.m.t. (13 minutes MET). The heaters were reconfigured
from system-A-only to systems A and B at approximately 13.5 minutes MET, and
the temperatures eventually recovered. Throughout the occurrence, the
evaporator outlet temperatures were stable. No further problems with the FES
were noted during ascent. To verify the performance of the high-load-duct system
A heater, the heater was powered up at 173:16:14 G.m.t. (01:01:25 MET), and
temperatures were monitored for approximately 2 hours and 45 minutes. A
nominal temperature signature was observed.

At 172:15:18:30 G.m.t. (00:00:29:30 MET), the general purpose computer (GPC) 5
input/output (1/0) terminate B discrete began behaving erratically (Flight Problem
STS-78-V-01). The backup flight system (BFS) software was contained in GPC 5.
At 172:21:18 G.m.t. (00:06:29 MET), a hardware-initiated stand-alone memory
(HISAM) dump of the BFS software contained in GPC 5 memory was performed to
support troubleshooting the erratic I/O terminate B discrete condition. An analysis
of the dump of the BFS software was performed, and no problems were found with
the software. The BFS software was successfully loaded into GPC 2 at
approximately 176:20:05 G.m.t. (04:05:16 MET). A dump-and-compare of the
GPC 2 software confirmed a nominal software load. During the same time frame,
GPC 5 was loaded with primary avionics software system (PASS) G2 software and
placed in a redundant set with GPC 1. This configuration was maintained for the
remainder of the on-orbit period and no anomalous GPC 5 behavior was )
observed. GPC 5 ran the PASS G3 software in the redundant set (commanding
string 4) during entry and its performance was nominal.

During deorbit preparations at 189:09:19 G.m.t. (16:18:30 MET), the BFS, resident
in GPC 2, registered an error code 41 (illegal engage) similar to the error that was
logged during ascent when the BFS was in GPC 5. This occurrence was
coincident with the GPC 4 output switch being taken from terminate to normal,
which explained the error code.

Extensive postflight troubleshooting has been performed, and the problem has not
recurred. However, the I/O terminate B wiring was removed and replaced, and
damage was found in one of the connectors. Failure analysis will attempt to
determine if the damage is the source of the problem.

The orbital maneuvering subsystem (OMS) 1 maneuver was not required as a
direct ascent trajectory was flown. The OMS 2 maneuver was performed at
172:15:30:28.5 G.m.t. (00:00:41:28.5 MET). The maneuver was 117.5 seconds in
duration, and the differential velocity (AV) was 185.5 ft/sec. The resulting orbit
was 153.6 by 146.7 nmi. Following the OMS 2 maneuver, the payload bay doors
were opened at 172:16:09 G.m.t. (00:01:20 MET).

As expected, the APU 1 fuel pump inlet pressure decayed after ascent following
closure of the fuel isolation valve (FIV) as a result of fuel-pump carbon-seal
leakage into the seal cavity drain (Flight Problem STS-78-V-05). This is the same
APU that was flown in this position on the previous flight of OV-102 (STS-75),
when a similar decay was observed. The fuel inlet pressure dropped to



approximately 40 psia indicated (24 psia corrected) which was just above the
indicated seal-cavity drain-line pressure of 22 to 23 psia. The pressure decayed at
a higher rate this mission than during STS-75, indicating that the leak was
becoming worse (the inlet pressure did not crack the FIV relief valve as is typically
seen). Opening the FIV with a fuel pump inlet pressure above 15 psia was not a
concern and dynamic seal leakage was not noted on this APU. Therefore, this
leak did not pose a flight impact. APU 1 fuel pump seal performance was nominal
during the entry run. During postflight operations, a total of 365 cc of hydrazine
was drained from the APU 1 catch bottle.

At 189:11:51 G.m.t. (16:21:02 MET) when APU 1 was started for its entry run, the
down-listed turbine speed sensor operation was erratic (Flight Problem
STS-78-V-06). The erratic behavior continued for the first four minutes of the APU
run. This is one of three turbine speed sensors in the APU and did not affect APU
performance. Because of this condition as well as the APU 1 fuel pump seal
leakage, the decision was made to remove and replace APU 1.

At approximately 174:15:50 G.m.t. (02:01:01 MET), while in the topping mode and
on the primary A controller, the FES shut down (Flight Problem STS-78-V-03). A
restart attempt on the A controller was unsuccessful, and was followed by an
unsuccessful restart attempt on the B controller. Data from the shutdown and
subsequent unsuccessful restarts indicated icing in the FES core. A FES
core-flush initiated at 174:17:12 G.m.t. (02:02:23 MET) successfully removed the
ice from the core. To reduce the heat load to the FES, at 174:18:13 G.m.t.
(02:03:24 MET), the port radiator was deployed. The deployed radiator provided
additional cooling capacity for the active thermal contro! system, and nominal FES
operation was observed on the B controller in the supplemental cooling mode.

At approximately 180:08:19 G.m.t. (07:17:30 MET), a water dump through the FES
using the B controller was initiated to troubleshoot the shutdown that occurred
previously on the A controller. The FES subsequently shut down at approximately
180:10:08 G.m.t. (07:19:19 MET). The crew successfully performed the FES
core-flush procedure to remove any ice that may have formed and caused the
shutdown.

During deorbit preparations at approximately 189:10:04 G.m.t. (16:19:15 MET),
the FES shut down after almost an hour and a half operating in the full-up mode
on the primary B controller. The high-load core was flushed, and the data indicate
ice was exiting through the high-load ducts. A flush was performed on the topping
core followed by a second high-load core flush, but no additional ice was noted.
The remainder of the mission was performed using the primary A controller with no
further anomalies.

Postflight troubleshooting has lead to the removal of the system A and B high-load
spray valves and flushing of the feedlines between the spray valves and the
accumulators. An adjustment may be made to the Freon coolant loop (FCL) 1
flowrate to reduce the difference between its flowrate and that of FCL 2.



The quantities of hydrogen (H,) tanks 4 and 5 began diverging at approximately
176:12:00 G.m.t. (03:21:11 MET) while fuel cell Ho was being supplied by tanks 4
and 5 (Flight Problem STS-78-V-04). On OV-102, the H, tank 4 and 5 heaters
share a heater controller and as such the heaters cycle on and off simultaneously.
Troubleshooting, during which H, tanks 4 and 5 were operated for several hours
on only the A-heaters followed by several hours on only the B-heaters, confirmed
that the B heater on H; tank 4 had failed. The H, tank 4 and 5 heaters were then
reconfigured for heater-A-only operation. This condition did not impact Hz tanks 4
and 5 usage, and the cryogen’s were used to tank depletion. KSC troubleshooting
isolated the failure to a mechanically failed fuse in the B heater control circuit. A
similar failure occurred on the last flight of OV-102 (STS-75) and was isolated to a
fuse failure in the A heater control circuit. The fuse was replaced during the
STS-78 flow. The STS-75 fuse failure was mechanical and caused by thermal
stress cycles, not by an anomalous over-current condition.

At 185:17:04 G.m.t. (13:02:15 MET), the starboard radiator was deployed to
provide additional cooling for the vehicle.

The RCS hot-fire was successfully performed at 188:08:34 G.m.t. (15:17:45 MET).
All RCS thrusters functioned properly during the hot-fire.

The flight control systems (FCS) checkout was successfully performed, and
nominal performance on all subsystems exercised during the checkout was
observed. As planned, APU 2 was used for FCS checkout. The APU was started
at 188:08:49:56 G.m.t. (15:18:00:56 MET), ran for 5 minutes and 4 seconds, and
consumed 16 Ib of fuel.

All three parts of Development Test Objective (DTO) 837 - Vernier RCS Reboost -
were performed satisfactorily. Vermnier thruster operation was nominal during the
DTO performance. Data from the DTO will be analyzed postflight.

All stowage and deorbit preparations were completed in preparation for entry on
the nominal end-of-mission landing day. The payload bay doors were successfully
closed and latched at 189:09:00:26 G.m.t. (16:18:11:26 MET).

During deorbit preparations, the rudder channel 3 position feedback became
erratic (Flight Problem STS-78-V-07). Prior to entry interface (E), the rudder is at
+5 degrees so that a failure of this type can be detected. The problem was also
seen in the servovalve current as well as the secondary differential pressure (AP)
measurements following APU 2 start. After El, the rudder channel 3 was manually
commanded to bypass. The bypass command left the rudder operating on
channels 1, 2, and 4 and was thus tolerant of a second failure. During the latter
part of entry when the rudder was used for steering, the rudder position was
apparently healed and operated properly. Postflight troubleshooting has not yet
repeated or isolated the problem.

The deorbit maneuver for the first landing opportunity at the Shuttle Landing
Facility (SLF) was performed on orbit 271 at 189:11:36:36 G.m.t.



(16:20:47:36 MET), and the maneuver was 162.16 seconds in duration with a
AV of 271.4 ft/sec.

Entry was completed satisfactorily, and main landing gear touchdown occurred on
SLF concrete runway 33 at 189:12:36:36 G.m.t. (16:21:47:36 MET) on July 7,
1996. The Orbiter drag chute was deployed at 189:12:36:40 G.m.t. and the nose
gear touchdown occurred 8 seconds later. The drag chute was jettisoned at
189:12:37:12 G.m.t. with wheels stop occurring at 189:12:37:31 G.m.t. The rollout
was normal in all respects. The flight duration was 16 days 21 hours 47 minutes
and 36 seconds, which is a new endurance record for a Space Shuttle flight. The
APUs were shut down 14 minutes 53 seconds after landing.



PAYLOADS

The Life and Microgravity Sciences (LMS) payload was carried in the Spacelab
module, and the two main areas of concentration were life science studies and
microgravity experiments. The Life Sciences general performance was
outstanding, with nearly 100 percent of the planned data and science collected.
Some problems arose, but all systems were restored to operational service
through IFM procedures.

The life science studies probed the responses of living organisms to the low-
gravity environment with the primary concentration in musculoskeletal physiology.
The microgravity experiments, which were also very successful, focused on
understanding the subtle influences that are at work during processing of various

samples. In addition, all secondary payload operations were successfully
conducted.

LIFE AND MICROGRAVITY SCIENCES

Human Physiology Experiments

The human physiology experiments were divided into two fields: human physiology
and space biology. The human physiology field was further divided into five areas
which were as follows:

. Musculoskeletal;

. Metabolic;

. Pulmonary;

. Human behavior and performance; and
Neuroscience.

®0 0T

The musculoskeletal experiments group were completed satisfactorily with data
collected as required. This group consisted of the following experiments:

a. Effects of Weightlessness on Human Single Muscle Fiber Function;

b. Relationship of Long-Term Electromyographic Activity and Hormonal
Function to Muscle Atrophy and Performance;

c. Effects of Microgravity on Skeletal Muscle Contractile Properties;

d. Effects of Microgravity on the Biomechanical and Bioenergetic
Characteristics of Human Skeletal Muscle;

e. Magnetic Resonance Imaging After Exposure to Microgravity (Ground
Study); and



f. An Approach to Counteract Impairment of Musculoskeletal Function in
Space (Ground Study).

The Regulatory Function Metabolic Experiments were completed satisfactorily and
all experiments runs were successful. This group consisted of the following
experiments:

a. Direct Measurement of the Initial Bone Response to Space Flight; and

b. Measurement of Energy Expenditure During Space Flight With The
Doubly Labeled Water Method.

The Lung Function Pulmonary Experiment, which was entitled Extended Studies
of Pulmonary Function in Weightiessness, was completed satisfactorily and all
experiment runs were successful. A problem developed with the oxygen tank, but
an IFM was performed to obtain oxygen from the flight deck. Data were also
collected prior to the flight as well as after the flight for this experiment.

The Sleep, Schedule and Skills Human Behavior and Performance Experiments

were conducted satisfactorily with all desired data collected. The two experiments

that make up this group of human behavior and performance experiments were:
a. Human Sleep, Circadian Rhythms and Performance in Space; and

b. Microgravity Effects on Standardized Cognitive Performance Measures
using the Performance Assessment Workstation.

The Adapting to Space Neuroscience Experiments were conducted satisfactorily
with all desired data collected. No problems or in-flight anomalies occurred in the
experiment group, which consisted of the following experiments:

a. Torso Rotation Experiment; and

b. Canal and Otolith Interaction Studies.

Space Biology Experiments

The three space biology experiments studied the growth of pine saplings,
development of fish embryos, and bone changes in laboratory rats. All of these
experiments were completed nominally with no in-flight anomalies or significant
problems noted. The experiments in this grouping were:
a. Lignin Formation and the Effects of Microgravity - A New Approach;
b. Development of the Fish Medaka in Microgravity; and

c. Role of Corticosteriods in Bone Loss During Space Flight.



Microgravity Science Experiments

The STS-78 microgravity science experiments involved basic fluid physics
investigations, advanced semiconductor and metal-alloy materials processing, and
medical research in protein crystal growth. The goal of the microgravity science
research is to improve both production methods and final products of Earth-based
industries. The on-orbit experiments were conducted primarily by scientists on the
ground remotely commanding (telescience) the experiments. Data were collected
as required to fulfill the requirements of these experiments with all experiment runs
being completed. The Microgravity Sciences group of experiment categories are
discussed in the following paragraphs.

Bubble, Drop and Particle Unit - Fluid Physics Research: The fluid physics
research in the Bubble, Drop and Particle Unit (BDPU) collected data that may
advance materials processed on Earth. All test containers were processed;
however, the -15V power failed and this may have affected several test containers.
This problem was repaired by the crew and normal operations were achieved.
Also, a problem developed with retracting the needle, and this condition was also
corrected with an IFM. A listing of the experiments in this area of fluid physics
research follows:

a. Bubble and Drops Interaction with Solidification Fronts Experiment;

b. Evaporation and Condensation Kinetics at a Liquid Vapor Interface; and
Efficient Cooling of High-Powered Small Electronic Devices by Boiling Under
Microgravity Experiments;

c. The Electrohydrodynamics of Liquid Bridges;
d. Nonlinear Surface Tension Driven Bubble Migration; and
e. Oscillatory Marangoni Instability.

Advanced Gradient Heating Facility - Materials Processing: This materials
processing experiment provided data for additional understanding of the
conditions at which freezing materials change from solidifying with a flat boundary
or transition surface (edge) to solidifying with cellular and dendrite (tree-like)
transition shapes.

All cartridges were processed. However, some problems were noted and
corrected during the flight. Initially, the crew was unable to attach the primary
cable and used a backup cable on the first cartridge. The crew discovered that a
loose electromagnetic Interference (EMI) ring was hindering the cable connection.
The primary cable was attached and used for the remainder of the flight. Two
IFMs were performed to correct electrical problems.

The experiments performed using the Advanced Gradient Heating Facility are as
follows:
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a. Comparative Study of Cells and Dendrites During Directional
Solidification of a Binary Aluminum Alloy at 1-g and Under Microgravity;

b. Coupled Grthh in Hypermonotectics;

c. Effects of Convection on Interface Curvature during Growth of
Concentrated Ternary Compounds;

d. Equiaxed Solidification of Aluminum Alloy;

e. Interactive Response of Advancing Phase Boundaries to Particles; and

f. Particle Engulfment and Pushing by Solidifying Interfaces.
Advanced Protein Crystallization Facility - Medical Research: The Advanced
Protein Crystallization Facility - Medical Research were completed satisfactorily
and all experiments runs were successful. This group consisted of the following

experiments:

a. Advanced Protein Crystallization Facility on the Life and Microgravity
Sciences Mission;

b. Crystallization of EGFR-EGF;

c. Crystallization of Crustacyanin Subunits;

d. Crystallization of Engineered 5S rRNA Molecules;
e. Crystallization of Thermus Thermophilus AspRS;

f. Monitoring of Lysozyme Protein Crystal Growth in Microgravity via a
Mach-Zehnder Interferometer and Comparison with Earth Control Data;

g. Crystallization of the Nucleosome Core Particle in Space;

h. Enhanced Resolution Through Improved Crystal Quality in the Crystal
Structure Analysis of Photosystem |;

i. Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin --
Mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity;,

j. Crystallization in a Microgravity Environment on CcdB, a Protein Involved
in the Control of Cell Death;

k. Crystallization of Sulfolobus Solfataricus Alcohol Dehydrogenase; and

l. Growth of Lysozyme Crystals at Low Nucleation Density.

11



SECONDARY PAYLOADS

Biological Research in Canister

The Biological Research in Canister (BRIC) payload consisted of nine small
canisters of day-lily plant cells. A study was conducted postflight to investigate the
somatic embryogenisis of day lily cells after 17 days of microgravity.

Shuttle Amateur Radio Experiment

The Shuttle Amateur Radio Experiment (SAREX) equipment was set up on flight
day 2, and supported the planned 11 school contacts and 7 personal contacts.
The international school contacts involved a total of 271 students. The locations
included Grenoble, France; Nova Scotia, Canada; Australia and United States.
Numerous random contacts (100+) included Robert Thirsk’s father and operators
aboard the USS Essex.

Accelerometers for Characterizing the Microgravity Environment

Space Acceleration Measurement System: The Space Acceleration Measurement
System (SAMS) measured high-frequency accelerations such as Orbiter thruster
firings. Several materials and fluid science experiments were particularly sensitive .
to accelerations in the frequency ranges that SAMS recorded. The SAMS
operated satisfactorily throughout the mission.

Orbital Acceleration Research Experiment: The Orbital Acceleration Research
Experiment (OARE) provided extremely accurate measurements of low-frequency
changes in accelerations and vibrations experienced during on-orbit operations.
OARE operation was nominal throughout the mission.

Microgravity Measurement Assembly: The Microgravity Measurement Assembly
(MMA) provided data for determining both high- and low-frequency disturbances.
The MMA collected data from a network of sensors at selected locations within the
Spacelab module. The data from these sensors as well as the equipment-
dedicated and remote sensors is integrated into a unified data set. The MMA
operated nominally, but minor problems were noted and corrected.

12



VEHICLE PERFORMANCE

SOLID ROCKET BOOSTERS

Analysis of the flight data and assessment of the postflight condition of the
recovered hardware indicates that all Solid Rocket Booster (SRB) systems
performed nominally. The SRB prelaunch countdown was normal with no
unplanned holds, and no SRB Launch Commit Criteria (LCC) or Operational
Maintenance Requirements and Specification Document (OMRSD) violations
occurred. Likewise, no SRB in-flight anomalies were identified from the data and
inspection.

For this flight, the low-pressure heated ground purge in the SRB aft skirt was used
to maintain the case/nozzle joint temperatures within the required LCC ranges. At
T-15 minutes, the purge was changed to high pressure to inert the SRB aft skirt.

Both SRBs were satisfactorily separated from the External Tank (ET) at
123.7 seconds after liftoff. The SRBs were recovered and returned to KSC for
disassembly and refurbishment.

REUSABLE SOLID ROCKET MOTORS

The Reusable Solid Rocket Motors (RSRMs) flight performance was well within
the allowable performance envelopes and was typical of the performance
observed on previous flights. No LCC or OMRSD violations occurred during the
countdown, and all RSRM temperatures were maintained within acceptable limits
during the countdown. The RSRM propellant mean bulk temperature was 76 °F at
liftoff.

Motor performance parameters for this flight were within contract end item (CEI)
specification limits. Propulsion performance data are shown in the table on the
following page. The maximum trace shape variation of pressure versus time was
calculated to be 0.90 percent at 80 seconds for the left motor, and 0.95 percent at
80 seconds for the right motor. These values were well within the 3.2 percent
allowable limits.

Field joint heaters operated for 10 hours 48 minutes during the countdown. Power
was applied to the igniter heating elements 33 percent of the time to maintain the
igniter-joint temperatures in the normal operating range.

During the postflight disassembly and inspection of the RSRMs, sooting was
observed on all six field-joint J-leg insulation interfaces (Flight Problem
STS-78-M-01). Heavy sooting and heat effects (discoloration and charring) were
observed on the J-leg insulation interfaces in the center and aft field joints. No
heating effects were noted to the capture feature-to-clevis metal interfaces or the
capture feature O-rings, and no gas had penetrated past the capture feature
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O-rings. The sooting/charring patterns were most extensive in the center joints,
then the aft joints followed by the forward joints which exhibited the least
sooting/charring effects with only slight soot penetration at localized points. All
engineering and CEl specifications were met; however, this was the first
occurrence of heat effected insulation within the field joint J-leg region.

The detailed inspection revealed that the left-hand center field joint exhibited nine
locations with soot to the capture feature O-ring and seal surfaces. Slight
discoloration was noted at some locations; however, no charring was evident on
the left-hand center joint. The right-hand center field joint exhibited three locations
with light soot slightly past the J-leg radius with no charring or discoloration present
after cleaning. The aft and forward field joints did not exhibit any soot patterns
past the radius. At the writing of this report, an investigation into the cause or
causes of the STS-78 anomaly is continuing.

RSRM PROPULSION PERFORMANCE

Parameter Left motor, 76 °F Right motor, 76 °F
Predicted Actual Predicted Actual
Impulse gates
1-20, 10° Ibf-sec 65.42 66.35 65.47 66.25
1-60, 10° Ibf-sec 174.48 176.75 174.59 177.05
I-AT, 10° Ibf-sec 296.79 297.40 296.92 297.58
Vacuum Isp, Ibf-sec/lbm 268.6 269.1 268.6 269.2
Burn rate, in/sec @ 60 °F 0.3665 0.3691 0.3665 0.3693
at 625 psia
Burn rate, in/sec @ 77 °F 0.3707 0.3733 0.3707 0.3735
at 625 psia
Event times, seconds®
Ignition interval 0.232 N/A 0.232 N/A
Web time® 110.0 108.5 110.0 108.3
50 psia cue time 119.8 118.8 119.8 118.5
Action time® 121.9 120.7 121.9 120.2
Separation command 124.7 123.7 124.7 123.4
PMBT, °F 76 76 76 76
Maximum ignition rise rate, 90.4 N/A 90.4 N/A
psia/10 ms
Decay time, seconds 2.8 2.7 2.8 2.5
(59.4 psia to 85 K)
Tailoff Imbalance Impulse Predicted Actual
differential, Klbf-sec N/A 239.4

Impulse Imbalance = Integral of the absolute value of the left motor thrust minus

right motor thrust from web time to action time.

b
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EXTERNAL TANK

The ET loading and flight performance was excellent, and no in-flight anomalies
occurred. All ET electrical and instrumentation equipment performed satisfactorily,
and all ET purges and heaters operated properly. No ET LCC or OMRSD
violations were identified. All flight objectives were satisfied.

There was no ice observed on the ET acreage, and the Red Team reported no
unacceptable ice/frost formations. Normal quantities of ice or frost were present
on the LO; and LH; feedlines, the pressurization brackets and along the LH;
protuberance air load (PAL) ramps. All observations were acceptable as
determined from the NSTS 08303 document. The Ice/Frost Red Team reported
that no anomalous thermal protection subsystem (TPS) conditions existed, and the
foam crack that typically develops on the -Y vertical strut did not occur.

The ET pressurization system functioned properly throughout the engine start and
flight. The minimum LO; ullage pressure experienced during the ullage pressure
slump was 14.6 psid.

ET separation occurred as planned, and the ET intact impact point was
approximately 13 nmi. uprange of the preflight prediction.

SPACE SHUTTLE MAIN ENGINE

All Space Shuttle main engine (SSME) parameters were normal throughout the
prelaunch countdown and were typical of the prelaunch parameters observed on
previous flights. Engine ready was achieved at the proper time; all LCC were met;
and engine start and thrust buildup on SSME 1 and 3 was normal. Thrust build-up
of SSME 2 (S/N 2036) violated the thrust build-up rate specification during engine
start (Flight Problem STS-78-E-01). The requirement specifies that the thrust
build-up will not exceed 14,000 Ib thrust change for any two consecutive 20-ms
time intervals above 15 percent of rated power level. Three total data points
violated the specification with two of the data points being consecutive in time.
This requirement is the result of an aft compartment acoustic over-pressure
concern for the block 1 engine. This was the first occurrence of this limit violation.
The start transient requirements are being reassessed.

Data review indicated that all four of the LH, low-level engine cut-off (ECO)
sensors indicated dry approximately 2.3 seconds after MECO. The ECO sensors
are located at the bottom of the LH, tank and are positioned so that approximately
1867 Ibm of LH; remained within the total system (ET, Orbiter, and SSMEs).
Postflight reconstruction of the propellant usage indicates 2799 lbm of LH2
remaining at MECO, and that was 790 Ibm less than the preflight prediction. This
amount of propellant remaining was the least measured since the return to flight
(8TS-26). Nominally, 3,000 to 5,000 Ibm of LH; is remaining at MECO.
Calculations of the residual LH, level, based on flight performance, indicates no
vehicle anomalies in the ECO system.
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The evaluation of the LO; residual quantity indicated 3899 Ibm of excess LO,. In
combination with the findings of the previous paragraph (low LH residual) and the
high LO; residual, a potential mixture ratio problem is indicated (Flight Problem
STS-78-1-01). A review of the mixture ratio from the previous 11 flights shows a
trend to be biased low with the STS-78 mixture ratio being 3-sigma low. Postflight
calculations also revealed that approximately 3200 Ib less LO, was consumed
than predicted. This was the first time in the Shuttle Program that insufficient LH,
remained to burn all of the available LO-.

Flight data indicate that the SSME performance during mainstage, throttling,
shutdown, and propellant dumping operations was normal. The high pressure
oxidizer turbopump (HPOTP) and high pressure fuel turbopump (HPFTP)
temperatures were well within specification limits throughout engine operation.
Main engine cutoff (MECO) occurred at T + 509.28 seconds. No failures or
significant SSME problems were noted.

SHUTTLE RANGE SAFETY SYSTEM

The Shuttle Range Safety System (SRSS) performed satisfactorily. All closed-
loop testing was completed as scheduled during the launch countdown. All SRSS
safe and arm (S&A) devices were armed and system inhibits turned off at the
appropriate times. All SRSS measurements indicated that the system operated as
expected throughout the countdown and flight.

As planned, the SRB S&A devices were safed, and the SRB system power was
turned off prior to SRB separation. The ET system remained active until ET
separation from the Orbiter.

ORBITER SUBSYSTEM PERFORMANCE

Main Propulsion System

The overall performance of the main propulsion system (MPS) was nominal. The
LO; and LH; loading was performed as planned with no stop-flows or reverts;
however, the initiation of tanking was delayed approximately 20 minutes to correct
a ground electrical problem. No LCC or OMRSD violations occurred.

No significant hazardous gas concentrations were detected during preflight
operations. The maximum hydrogen concentration level in the Orbiter aft
compartment, which occurs after the start of fast-fill, was approximately 140 ppm
(corrected), and this compares favorably with previous data for this vehicle.

The LH; loading operations were normal. Based on an analysis of loading system
data, the LHz load at the end of replenish was 231,866 Ibm. Compared to the
inventory (predicted) load of 231,832 Ibm, this assessment yields a difference of
+0.04 percent, which is well within the required loading accuracy of £0.37 percent.
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The LO; loading operations were normal. Based on an analysis of the loading
system data, the LO; load at the end of replenish was 1,388,872 Ibm. Compared
to the inventory (predicted) load of 1,388,277 Ibm, this assessment yields a
difference of + 0.02 percent, which is well within the MPS loading accuracy of

+ 0.43 percent.

The ascent MPS performance was satisfactory. Data show that both
pressurization subsystems performed as planned, and that all net positive suction
pressure (NPSP) requirements were met throughout the flight. The liquid oxygen
ullage pressure of 28.3 psia was the highest ever measured. The minimum LO:
ullage pressure experienced during the period of the ullage pressure silump was
14.5 psid.

A review of the MPS manifold pressure data indicated that the LH> manifold
repressurization after the second vacuum inert was not performed. Further review
of the data indicated that the LH, pressurization line vent valve was opened for
eight seconds instead of the LH, manifold repressurization valve. The switches for
both valves are located on panel R4. Consideration was given to performing the
repressurization later in the flight to fulfill the OMRSD File IX (In-Flight Checkout)
requirement associated with this procedure; however, the decision was made not
to pursue an on-orbit repressurization of the LH, system. The gaseous hydrogen
(GH,) flow control valves and filter elements are scheduled to be removed and
replaced during the STS-80 flow (next flight of this vehicle), and KSC will perform
the leak check after that system reconfiguration.

The SSME 1 LH; inlet pressure measurement failed off-scale high (OSH) at
172:14:53:56 G.m.t. Coincident with the transducer failure, a BITE bit was set on
MDM FA 1 card 14. This bit is indicative of a problem in the A/D converter in the
SCU or a problem in card 14. The SSME LH; inlet pressure measurement as well
as three other SSME pressure measurements, which functioned nominally, are
channelized through card 14. Analysis of the BITE logic indicates that an OSH
voltage from the LH, sensor will cause the BITE indication on MDM FA 1. Thus,
this BITE is an explained condition. A similar failure was observed on STS-51
(SSME 2 LO; inlet pressure) that resulted in the same BITE indication on MDM
FA2. Postflight testing confirmed that the LH> inlet pressure transducer had failed.
The transducer was removed and replaced.

The gaseous oxygen (GOy) fixed orifice pressurization system performed as
predicted. The GH_ pressurization system also performed nominally. All tank and
engine requirements were met by both systems.

STS-78 was the first flight of OV-102 with all of the GH; pressurization systems
modifications incorporated and with filters installed in all engine legs plus the
pre-pressurization leg. All flow control valve (FCV) cycles were evaluated for slow
valve response, and no slow responses were found.
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Reaction Control Subsystem

The reaction control system (RCS) performed satisfactorily throughout the mission
with no in-flight anomalies identified. Propellant consumption during the mission
was 4,204.8 Ibm from the RCS tanks, and 325.3 Ibm from the OMS tanks during
interconnect operations.

At 172:19:19 G.m.t. (00:04:30 MET), a RCS retrograde trim maneuver was

performed. This maneuver lasted 52 seconds and imparted a 12-ft/sec AV to the
vehicle. Subsystem performance was nominal.

When establishing a left OMS interconnect at 173:10:18 G.m.t. (00:19:29 MET),
the right RCS tanks and the left OMS tanks were inadvertently interconnected.
The maximum AP during the interconnect period was 4.7 psid, well within the
Shuttle Operational Data Book (SODB) limit of 50 psid, and there was no impact to
the mission from this inadvertent operation. During the interconnect period,
approximately 12 Ibm of oxidizer and 4 Ibm of fuel were transferred from the left
OMS tanks to the right RCS tanks. '

The RCS vernier thruster F5L oxidizer and fuel injector temperature data
suggested that the heater on this thruster may have been failed-on. Starting at
approximately 172:20:19 G.m.t. (00:05:30 MET), the fuel injector temperature
remained 10 °F warmer than the oxidizer injector temperature. This signature was
indicative of a heater that was continuously on. There were several occasions,
following the F5L thruster firings, when the thruster appeared to be warm enough
for a sufficient length of time to turn the heater off; however, the evaluation was
not conclusive. The thruster heater eventually cycled off at approximately
187:05:10 G.m.t. (14:14:21 MET) while the injector temperatures were off-scale
high due to thruster firings. When the injector temperatures returned to scale at
187:05:30 G.m.t. (14:14:41 MET), the heater had switched off as indicated by the
injector temperatures tracking closely. Later in the mission, the heater again
cycled properly indicating satisfactory performance.

The RCS hot-fire was successfully performed at 188:08:34 G.m.t. (15:17:45 MET).
All RCS thrusters functioned properly during the hot-fire.

Orbital Maneuvering Subsystem

The orbital maneuvering subsystem (OMS) performed nominally throughout the
flight and no in-flight anomalies were noted. A total of 11,080 Ibm of OMS
propellants were consumed during the mission. The RCS used 325.3 Ibm of that
total during interconnect operations. The table on the following page presents
pertinent data from the two OMS maneuvers. The OMS 1 maneuver was not
required as a direct ascent trajectory was flown. The OMS 2 maneuver was
performed at 172:15:30:28.5 G.m.t. (00:00:41:28.5 MET). The resulting orbit was
153.6 by 146.7 nmi. The deorbit maneuver for the first landing opportunity at the
SLF was performed on orbit 271 at 189:11:36:36 G.m.t. (16:20:47:36 MET).
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OMS FIRINGS

Firing
OMS firing Engine | Ignition time, G.m.t/MET| duration, | AV, ft/sec
seconds
OMS-2 Both 172:15:30:28.5 G.m.t. 117 185
00:00:41:28.5 MET
Deorbit Both 189:11:36:36 G.m.t. 162 271
16:20:47:36 MET

The inlet pressures, chamber pressure and regeneration jacket temperature for
both engines was as expected. The OMS firing times and propellant consumption
were consistent with predictions, and this also verified proper performance. The
GN; regulator outlet pressure was in the normal operating band during the OMS
engine starts-and during postfiring purges. During the deorbit firing, the pressure
jumped from a steady-state value of 315 psia to 320 psia during the start of the
firing, indicating some slight stickiness may be present in the valve. However, the
bipropellant valve opening times were within specification limits, so the regulator
performance (slight stickiness) had no noticeable affect. Also the regulator set
pressure during the postflight GN, bottle dumps was nominal.

Power Reactant Storage and Distribution Subsystem

The power reactant storage and distribution (PRSD) subsystem performed
nominally on this the eighth flight of the extended duration Orbiter (EDO) paliet.
The PRSD subsystem supplied 5320 Ibm of oxygen and 670 lbm of hydrogen to
the fuel cells for the production of electricity. In addition, the PRSD supplied

220 Ibm of oxygen to the environmental control and life support system (ECLSS)
for crew breathing and cabin pressurization. At the end of the mission, a 68-hour
mission extension capability at average mission power levels of 18.9 kW was
possible with the remaining reactants. This extension capability was 97 hours at
the extension-day average power level of 13.5 kW. Since this was only a
single-shift mission for the crew, one set of the manifold isolation valves were
closed for each sleep period, and this satisfied the in-flight checkout requirement.

During the fuel cell high-load test and the PRSD system integrity check,
subsequent to fuel cell start-up, the hazardous gas detection system (HGDS)
detected a 10 ppm increasing trend in the oxygen concentration in the
midfuselage. The requirement is that no increase in concentration will occur
above the background level. This increase began at 172:06:26 G.m.t. and lasted
for almost 10 minutes. The gas supply valves were closed for 5.5 minutes. The
integrity check, in which the gas supply valves are closed and the fuel cells
operate on internal reactants, was repeated at 172:11:32 G.m.t. The gas supply
valves were closed for 14 minutes, and the HGDS detected no increase in the
oxygen concentration this time. HGDS data from the previous Extended Duration
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Orbiter (EDO) flight (STS-75) was reviewed, and the signature was identical. For
this flight, the relative humidity of the payload bay purge during the first check was
2 percent, compared with a humidity of 0 percent during the second check. The
10 ppm oxygen concentration increase may be attributed to the 2 percent relative
humidity. The Orbiter purge is switched from air to gaseous nitrogen (GN.) just
prior to the first integrity check. Residual moisture from the air purge remains in
the system for three to four hours after the air-to-GN, changeover.

The quantities of H, tanks 4 and 5 began diverging at approximately

176:11:57 G.m.t. (03:21:08 MET) while fuel cell H; was being supplied by tanks 4
and 5 (Flight Problem STS-78-V-04). On OV-102, the H, tank 4 and 5 A and B
heaters each have a common controller and as such the heaters cycle on and off
simultaneously. On-orbit troubleshooting, during which H, tanks 4 and 5 were
operated for several hours on only the A-heaters followed by several hours on only
the B-heaters, confirmed that the B heater on H, tank 4 had failed. The H, tank 4
and 5 heaters were then reconfigured for heater-A-only operation. A similar failure
occurred on the last flight of OV-102 and was isolated to a fuse failure in the A
heater control circuit. The fuse was replaced during the STS-78 flow. Failure of
the tank 4 heater did not significantly impact H; tank use, and tanks 4 and 5 were
depleted using the A heaters only. KSC troubleshooting isolated the B heater
failure to a mechanically failed fuse in the B heater control circuit.

In all of the EDO flights, H, tanks 8 and 9 have diverged in quantity because of a
higher heat leak into tank 8. This higher heat leak causes tank 8 to pressurize
faster than tank 9 when the tanks are not being pressurized by their heaters. Tank
8 reaches the manifold pressure sooner, and therefore begins feeding the fuel
cells before tank 9. This causes the quantity in tank 8 to decrease more quickly
than tank 9. When tank 8 was at 15 percent and tank 9 was at 30 percent, the B
heater in tank 8 was turned off. With both the A and B heaters cycling in tank 9
and just the B heater in tank 8, the quantities converged at 6 percent. Later on,
both heaters in each tank were turned on to deplete the tanks.

Fuel Cell Powerplant Subsystem

Fuel cell flight performance was nominal. The Orbiter electrical power levels
averaged 18.9 kW and the total Orbiter electrical load averaged 622 amperes.
The fuel cells produced 7675 kWh of electrical energy and 5990 Ib of potable
water. The fuel cells consumed 5320 Ibm of oxygen and 670 Ibm of hydrogen
during the 405.8 hour mission. Seven fuel cell purges were performed and all
were nominal. The actual fuel cell voltages at the end of the mission were

0.10 volt above the predicted level for fuel cells 1 and 3, and 0.05 volt above the
predicted level for fuel cell 2. No in-flight anomalies occurred in this subsystem
during the mission.

Fuel cell 1 (S/N 109) continued to have a slightly high condenser exit temperature
(TCE), which is a characteristic of this particular fuel cell. The TCE has been
fluctuating between approximately 156 and 159 °F since STS-52 (four previous
flights) when this fuel cell was refurbished as a zero-hour fuel cell. The Launch
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Commit Criteria (LCC) allows steady-state operation above 160 °F provided the
fuel cell inlet and outlet electrolyte concentrations remain within the
24- to 48-percent range. Since the concentration remained steady at
approximately 31 percent, no concern existed for violating the LCC.

Auxiliary Power Unit Subsystem

The auxiliary power unit (APU) subsystem performed nominally with two in-flight
anomalies identified, neither of which impacted the flight. The following table
presents the APU serial numbers flown as well as the amount of propellants
consumed and the run-time of the APUs.

APU RUN TIMES AND FUEL CONSUMPTION

APU 1 (S/N 204) APU 2 (S/N303) | APU3  (S/N 403)
Flight
phase

Time, Fuel Time, Fuel Time, Fuel

min:sec| consumption| min:sec| consumption{ min:seq consumption

Ib Ib lb
Ascent 21:37 54 19:44 59 21:51 56
FCS 05:03 16
checkout

Entry® 59:41 113 79:51 163 59:50 116
Total 81:18 167 106:38 238 81:41 172

* The APUs were shut down 15 minutes 15 seconds after landing.

As expected, the APU 1 fuel pump inlet pressure decayed from 340 psia to 40
psia in about two hours after ascent following closure of the FIV (Flight Problem
STS-78-V-05). This decay is indicative of fuel-pump carbon-seal leakage into the
seal cavity drain. This is the same APU that was flown in this position on the
previous flight of OV-102 (STS-75), when a similar decay was observed. The fuel
inlet pressure dropped to approximately 40 psia indicated (24 psia corrected)
which was just above the indicated seal-cavity drain-line pressure of 22 to 23 psia.
The pressure decayed at a higher rate this mission than during STS-75, indicating
that the leak was becoming worse (the inlet pressure did not crack the FIV relief
valve as is typically seen). Opening the FIV with a fuel pump inlet pressure above
15 psia was not a concern, and dynamic seal leakage was not noted on this APU;
therefore, this leak did not pose a flight impact. The APU was pressurized for
entry, and the pressure decayed again after landing and APU shutdown. During
postflight operations, a total of 365 cc of hydrazine was drained from this APU’s
catch bottle.

At 189:11:51 G.m.t. (16:21:02 MET) when APU 1 was started for its entry run, the
down-listed turbine speed sensor [magnetic pickup unit (MPU)] 3 initially failed off,
then operated erratically for approximately four minutes, and then operated

satisfactorily for the remainder of APU 1 operation (Flight Problem STS-78-V-06).
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MPU 3 is one of three turbine speed sensors in each APU but is the only
downlinked speed sensor from APU 1. The erratic operation did not affect overall
APU 1 performance or impact the mission. This was the first occurrence of an
in-flight failure of a speed sensor; however, this failure mode has been seen
previously in ground operations and testing. Postflight testing at KSC confirmed
that a discontinuity existed in the MPU 3 circuit. APU 1 has been removed and
sent to the contractor for inspection of the fuel pump seals discussed in the
previous paragraph and replacement of the speed sensor.

The FCS checkout was successfully performed, and nominal performance on all
subsystems exercised during the checkout was observed. As planned, APU 2 was
used for FCS checkout. The APU was started at 188:08:49:56 G.m.t.
(15:18:00:56 MET), ran for 5 minutes and 3 seconds, and consumed 16 Ib of fuel.

The APU heater systems were switched to the B heaters at approximately
188:10:00 G.m.t. (15:19:11 MET), shortly after completion of FCS checkout. The
APU 1 lubrication oil outlet temperature decreased to approximately 41.7 °F at
188:19:29 G.m.t. (016:04:40 MET), at which time the crew was instructed to switch
back to the A heaters to avoid a possible fault detection and annunciation (FDA)
alarm later during the crew sleep period. The FDA alarm occurs at 41 °F. The
thermal switches that control the APU 1 lubrication oil heaters are located near
APU 2 and are affected by the heat generated by APU 2 usage. This phenom-
enon has been observed on other flights when APU 2 has been used for FCS
checkout. After reviewing the data on this behavior, the decision was made to
switch back to the B heaters prior to entry in an attempt to verify nominal B heater
operation. A heater cycle on the B heater was not required prior to the end of the
mission. KSC will verify the operation of this heater during turnaround testing.

Hydraulics/Water Spray Boiler Subsystem

The hydraulics/water spray boiler (WSB) subsystem performed nominally during
the flight with one in-flight anomaly identified.

An under-cooling condition occurred during ascent of WSB 3 while operating on
controller A. The APU 3 lubrication oil return temperature reached 297 °F before
cooling was noted. The B controller was selected at approximately

172:15:02 G.m.t. (00:00:13 MET), shortly after spray cooling was observed on the
A controller. The lubrication oil return temperature stabilized at 253 °F, while on
the B controller. A switch back to the A controller was performed at approximately
172:15:04 G.m.1. (00:00:15 MET), and nominal cooling continued. There were no
mission constraints on the use of WSB 3.

Just prior to or during landing, the heat exchanger mode is normally reached on
all three WSBs. At 189:12:31 G.m.t. (16:21:42 MET), several minutes prior to
landing, toggling of the WSB 1 ready indication was indicated (Flight Problem
STS-78-V-08). Toggling of this indication is not unusual and is typically caused
by the WSB hydraulic fluid bypass valve transitioning between the heat
exchanger and bypass positions. However, during STS-78, bypass valve
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movement was not indicated. None of the other parameters that can cause a
ready indication to change state (controller enabled, steam vent temperature, or
GN; shut-off valve position) explain the toggles that were indicated. A review of
previous flight data shows similar performance during the previous flight of this
WSB (STS-75). Proper operation of the bypass valve and the ready indication
will be verified post flight. A troubleshooting plan has been developed that will
consist of cycling the bypass valve.

During landing, the reservoir quantity on hydraulic system 1 dropped 17.4 percent
during landing gear deployment, and the specification for this condition is no more
than 15 percent. KSC will inspect the hydraulic system for leaks during the
turnaround operations.

Electrical Power Distribution and Control Subsystem

The electrical power distribution and control (EPDC) subsystem performed
nominally throughout all phases of the flight. One in-flight anomaly, H, Tank 4 and
5 Heater Failure, is discussed in the Power Reactant Storage and Distribution
Subsystem section of this report.

Environmental Control and Life Support Subsystem

The atmospheric revitalization system (ARS) functioned satisfactorily. Cabin
temperature was maintained between 72.5 and 79.8 °F, with a maximum cabin
humidity level of 43.58 percent. The PPCO; did not exceed 3.0 mm Hg during the
flight. The maximum air temperature in avionics bays 1, 2, and 3 was 105.1,
91.78, and 87.03 °F, respectively. The maximum heat exchanger water outlet
temperature for avionics bays 1, 2, and 3 was 94.6, 89.6 and 89.44 °F,
respectively. The maximum cold-plate temperature for avionics bays 1, 2, and 3
was 99.1, 88.9, and 88.9 °F, respectively.

The regenerative CO, removal system (RCRS) operated satisfactorily throughout
the mission, maintaining CO, within the desired range. STS-78 was the third flight
of this unit, and the unit has approximately 2.2 years of life remaining.

The indicated carbon dioxide (CO,) concentration of the RCRS shifted low and
became erratic at 173:07:59 G.m.t. (00:17:10 MET). The measurement remained
erratic throughout the mission. The measurement does not affect performance of
the RCRS, and the indicated cabin CO; concentration was nominal throughout the
mission.

The atmospheric revitalization pressure control system (ARPCS) performed
nominally throughout the duration of the flight. During the redundant component
check, the pressure control configuration was switched to the alternate system.
Both systems exhibited normal operation.
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The ATCS successfully supported payload cooling requirements by placing both of
the Freon coolant loop (FCL) flow proportioning valves in the payload position
approximately 2 hours after launch. The valves were returned to the interchanger
position during the Spacelab deactivation.

During ascent, the flash evaporator system (FES) high-load duct temperatures
were erratic and lower than normal. The inboard duct temperature dropped to
approximately 119 °F (normally remains above 190 °F) by 172:15:02 G.m.t.

(13 minutes MET). The heaters were reconfigured from system-A-only to systems
A and B at approximately 13.5 minutes MET, and the temperatures eventually
recovered. Throughout the occurrence, the evaporator outlet temperatures were
stable. No further problems with the FES were noted during ascent. To verify the
performance of the high-load duct system A heater, the heater was powered up at
173:16:14 G.m.t. (01:01:25 MET), and temperatures were monitored for
approximately 2 hours and 45 minutes. A nominal temperature signature was
observed.

At approximately 174:15:50 G.m.t. (02:01:01 MET), while operating in the topping
mode and on the primary A controller, the FES shut down. A restart attempt on
the A controller was unsuccessful, and was followed by an unsuccessful restart
attempt on the B controller. Data from the shutdown and subsequent
unsuccessful restarts indicated icing in the FES core. A FES core-flush initiated at
174:17:12 G.m.t. (02:02:23 MET) successfully removed the ice from the core. The
heat load at the time of the first shutdown was high; therefore, to reduce the heat
load to the FES, the port radiator was deployed at 174:18:13 G.m.t.

(02:03:24 MET). The deployed radiator provided additional cooling capacity for
the active thermal control system (ATCS), and nominal FES operation was
observed on the B controller in the supplemental cooling (topping) mode.

At approximately 180:08:19 G.m.t. (07:17:30 MET), a water dump through the FES
using the B controller was initiated to troubleshoot the shutdown that occurred
previously on the A controller. The FES subsequently shut down at approximately
180:10:08 G.m.t. (07:19:19 MET). The crew successfully performed the FES
core-flush procedure to remove any ice that may have formed and caused the
shutdown. This FES had icing problems during its previous mission (STS-75) and
following that mission, the topping evaporator spray valves and the accumulators
were removed and replaced.

During deorbit preparations at approximately 189:10:04 G.m.t. (16:19:15 MET),
the FES shut down after almost an hour and a half operating in the full-up mode
on the primary B controller. The high-load core was flushed, and the data indicate
ice was exiting through the high-load ducts. A flush was performed on the topping
core followed by a second high-load core flush, but no additional ice was noted.

The remainder of the mission was performed using the primary A controller with no
further anomalies.
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KSC troubleshooting consisted of internal and external visual-inspections of the
high-load and topping evaporator cores, as well as leak and flowrate testing of
the system A and B high-load and topping spray valves. No anomalies were
noted in the visual inspections or spray valve leak tests. Initial flowrate testing of
the high-load system A spray valve resulted in a flowrate of 141 Ib/hr. Following
several back-flushes of the valve, the flowrate decreased to 101 Ib/hr. Since the
change in flowrate was unexplainable, the decision was made to remove and
replace the valve. The system B high-load spray valve was removed and
replaced as well. No problems were noted with the topping spray valves, and
therefore, the valves were not removed (these valves had been removed and
replaced prior to STS-78). Additional flushing of the A and B feedwater systems
was performed, and the accumulators were verified clean on the bench.

Note that the Freon coolant loop (FCL) 1 flowrate (approximately 3050 Ib/hr),
which is the highest flowrate of any FCL in the fleet, or the FCL 1 and 2 flowrate
imbalance (approximately 275 Ib/hr), may have played a role in the freeze-ups of
the topping evaporator. As a result, FES testing is planned at JSC to
demonstrate that theory. The results from this testing will determine what, if any,
adjustment needs to be made to the FCL 1 flowrate.

The radiator coldsoak provided cooling during entry through touchdown plus

4 minutes 46 seconds when ammonia boiler system (ABS) A was activated using
the secondary controller at 189:12:40 G.m.t. (16:21:51 MET). To minimize
thermal stress on the long-duration crew, ammonia cooling was activated early
by selecting the high-outlet temperature set point (57 °F) on both FCL radiator
flow controllers when the radiator controller outlet temperatures exceeded 40 °F.
This provided the necessary heat load for the ABS and avoided the increased
cabin temperature and humidity transient which occurs during nominal
postlanding operations between coldsoak depletion and ammonia activation.
System A operated for 34 minutes until it was deactivated at 189:13:14 G.m.t.
(16:22:25 MET) in preparation for ground-cooling connection.

The supply and waste water subsystem performed nominally throughout the
mission, and no in-flight anomalies were identified. All in-flight checkout
requirements were met prior to landing.

Supply water was managed through the use of the FES and overboard dump
system. Fourteen supply water dumps were performed at an average rate of
1.49 to 1.69 percent/minute (2.46 to 2.79 Ib/min). Four of the dumps were
performed simultaneously with waste water dumps. The supply water dump line
temperature was maintained between 77 and 106 °F throughout the mission with
the operation of the line heater.

Waste water was gathered at approximately the predicted rate. Five waste water
dumps were performed at an average rate of 1.93 to 2.00 percent/minute

(3.18 to 3.3 Ib/min). The waste water dump line temperature was maintained
between 54 and 79 °F throughout the mission. The vacuum vent line temperature
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was maintained between 60 and 75 °F with the vacuum vent nozzle between
110 and 161 °F.

The waste collection system (WCS) performed normally throughout the mission.

Airlock Support Subsystem

The airlock support system hardware was not required because no extravehicular
activity was planned or performed. The active-system-monitor parameters
indicated normal outputs throughout the mission.

Smoke Detection and Fire Suppression Subsystems

The smoke detection system showed no indications of smoke generation during
the entire mission. Use of the fire suppression system was not required.

Avionics and Software Support Subsystems

At approximately 172:14:54 G.m.t. (00:00:05 MET), a built-in test equipment
(BITE) bit was set on MDM FA 1 card 14. This bit is indicative of a problem in the
A/D converter in the sequence control unit (SCU) or a problem in card 14.
However, simultaneous with this BITE, the SSME 1 LH; inlet pressure failed off-
scale high (OSH). This pressure measurement is channelized through card 14
(channel 16). Analysis of the BITE logic indicates that an OSH voltage from this
sensor will cause the BITE indication on MDM FA 1. Thus, this BITE is an
explained condition. A similar failure was observed on STS-51 (SSME 2 LO, inlet
pressure) that resulted in the same BITE indication on MDM FA2. Postflight
testing confirmed that the transducer had failed.

At 172:15:18:30 G.m.t. (00:00:29:30 MET), the GPC 5 /O terminate B discrete
began behaving erratically. The BFS software was contained in GPC 5. At
172:21:18 G.m.t. (00:06:29 MET), a HISAM dump of the BFS software contained
in GPC 5 memory was performed to support troubleshooting the erratic I/O
terminate B discrete condition. An analysis of the dump of the BFS software
contained in GPC 5 memory was performed and no problems were found with the
BFS software.

The BFS software was successfully loaded into GPC 2 at approximately
176:20:05 G.m.t. (04:05:16 MET). A dump-and-compare of the GPC 2 software
confirmed a nominal software load. During the same time frame, GPC 5 was
loaded with primary avionics software system (PASS) G2 software and placed in a
redundant set with GPC 1. No anomalous GPC 5 behavior was observed during
the remainder of the mission. The GPC 5 output switch, which had been in the
terminate position since the GPC was loaded with PASS software and placed in
the redundant set, was placed in the normal position as planned at

177:20:59 G.m.t. (05:06:10 MET).
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To further troubleshoot the intermittent 1/O terminate B problem, the GPC 4 output
switch was placed in backup at 181:17:07 G.m.t. (09:02:18 MET). Had the failure
repeated in this configuration, it would have indicated that the problem was
between the GPC output switches and their power source, and therefore, the
problem would affect whichever GPC was running the BFS software. At
approximately 184:07:29 G.m.t. (11:16:40 MET), the GPC 4 output switch was
moved from the backup position to the terminate position. No intermittent /O
terminate B discretes were experienced.

During deorbit preparations at 189:09:19 G.m.t. (16:18:30 MET), the BFS, resident
in GPC 2, registered an error code 41 (illegal engage) similar to the error that was
logged during ascent when the BFS was in GPC 5. This incident was coincident
with the GPC 4 output switch being taken from terminate to normal. The
break-before-make design of the switch coupled with the wiring design of the
output switches resulted in the error code when the switch was moved. GPC 5 ran
PASS G3 software in the redundant set (commanding string 4) during entry and its
performance was nominal.

A similar failure occurred in this same slot on STS-32 (OV-102, flight 9). The
backup flight controller (BFC) and the GPC were removed and replaced. The
failure was not isolated in ground testing and was closed as an unexplained
anomaly with a most probable cause of the BFC.

Postflight troubleshooting began with the state of the /O terminate B discrete
being monitored for approximately 80 hours. There was no recurrence of the
anomaly during this time. Wire wiggle and pin-push tests were performed with
no recurrence of the anomaly. A breakout box was installed at the BFC and the
select, select off, and the terminate B true and complement signals were verified
to be nominal. The BFC delay timer was measured and found to be within
specification, suggesting that the circuit upstream of the BFC did not play into the
failure. A high potential (HiPOT) of the I/O terminate B true and complement
lines showed 0.2 milliamperes of leakage at 800 volts, indicating a potential short
between the lines. Flexing the harness caused the reading to fluctuate.

Although the reading was within OMRS limits (0.5 milliamperes), the wire runs
were removed. In the process of removing the wires a split was noticed in the
rubber grommet between the pins for the I/O Terminate B true and complement
signals. Also the crimp on one of the wires appeared to be suspect. The wire
had been stripped back farther than normal and a wire strand looked to be loose.
The decision was made to replace the entire 128-pin connector. The removed
hardware was sent to the malfunction laboratory for analysis.

The FCS checkout was successfully performed, and nominal performance on all
subsystems exercised during the checkout was observed. As planned, APU 2 was
used for FCS checkout.

Also during deorbit preparations, the rudder channel 3 position feedback became

erratic. Prior to El, the rudder is at +5 degrees so that a failure of this type can be
detected. The problem was also seen in the servovalve current as well as the
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secondary AP measurements following APU 2 start. After El, the rudder channel 3
was manually commanded to bypass. The bypass command left the rudder
operating on channels 1, 2, and 4 and was thus tolerant of a second failure.
During the latter part of entry when the rudder was used for steering, the rudder
position was apparently healed and operated properly. The problem is believed to
be caused by a discontinuity in the wiring between the power drive unit (PDU) and
aerosurface actuator (ASA) 3 in avionics bay 6. KSC troubleshooting had not
isolated the problem as of this writing.

Displays and Controls Subsystem

The displays and controls subsystem performed satisfactorily during the flight with
no in-flight anomalies identified.

Communications and Tracking Subsystems

All communications and tracking subsystems hardware performed nominally
throughout the mission. On-orbit S-band and Ku-band communications via the
Tracking and Data Relay Satellite (TDRS) were satisfactory. A new item for this
mission was the real-time video of entry and landing that was provided by the
Pilot-Point-of-View Camera (PPOV-CAM) and the S-band frequency modulation
(FM) system. lIts performance was nominal.

The Ku-band communications adapter (KCA) was used many times during the
mission. An excellent demonstration of its two-way video/voice capabilities was
obtained when, starting at 179:22:27 G.m.t. (07:07:38 MET), uplinking of taped
video and voice for the BDPU IFM troubleshooting procedures was provided to the
crew. The success of this procedure demonstrated the effectiveness of this
communications tool.

Operational Instrumentation/Modular Auxiliary Data System

The operational instrumentation/modular auxiliary data system (MADS) performed
satisfactorily during the flight. No in-flight anomalies occurred within the system.

Structures and Mechanical Subsystems

The tires and brakes were found to be in average condition for a landing on the
KSC concrete runway. The table on the following page provides the landing and
braking data for this flight.

Ply under-cutting was noted on the left main landing gear inboard tire during the
inspection. The under-cutting was very light on both outer ribs. This has been
observed on approximately 20 percent of the landings. The specific cause is not
known, but several parameters probably contribute to this type of damage.
STS-78 was a heavyweight vehicle (230,000 Ib), had a main gear touchdown
ground speed of 214 knots (about 13 knots above average), and a light crosswind
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LANDING AND BRAKING PARAMETERS

From
Parameter threshold, Speed, Sink rate, ft/sec Pitch rate,
ft keas deg/sec
Main gear 2435 208.0 ~1.3 N/A
touchdown
Nose gear 6537 148.9 N/A ~4.5
touchdown
Brake initiation speed 116.3 knots
Brake-on time 37.4 seconds
Rollout distance 9,290 feet
Rollout time 57.1 seconds
Runway 33 (Concrete) KSC
Orbiter weight at landing 229,198 Ib
Peak
Brake sensor pressure, Brake assembly Energy,
location psia million ft-Ib
Left-hand inboard 1 1032 Left-hand inboard 23.19
Left-hand inboard 3 1056 Left-hand outboard 22.03
Left-hand outboard 2 1032 Right-hand inboard 17.93
Left-hand outboard 4 1032 Right-hand outboard 19.77
Right-hand inboard 1 948
Right-hand inboard 3 864
Right-hand outboard 2 972
Right-hand outboard 4 924

(3 to 6 knots) from left to right. These parameters combined resulted in a left
inboard tire brake energy of 23.2 million ft-Ib (the highest of the four tires), which
was 16-percent higher than average.

The ET/Orbiter separation devices EO-1, EO-2, and EO-3 functioned normally.
Two clips were missing from the EO-2 “salad bow!” fitting. No ordnance fragments
were found on the runway beneath the umbilical cavities. However, several pieces
of purge barrier material held together with Mylar tape lay on the runway beneath
the LH, ET/Orbiter umbilical. Debris, which appeared to be a small piece of
lockwire adhering to a piece of Mylar tape, was wedged between the forward

16 mm camera lens and window. Virtually no umbilical close-out foam or white
room temperature vulcanizing (RTV) dam material adhered to the umbilical plate
near the LH; recirculation line disconnect.

Integrated Aerodynamic and Vehicle Heating and Thermal Interfaces

The prelaunch thermal interface purges were all conducted with nominal results.
The ascent aerodynamic and plume heating was nominal as was the entry
aerodynamic heating to the SSME nozzles.
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Thermal Control Subsystem

The thermal control subsystem (TCS) performance was nominal during all phases
of the mission. All subsystem temperatures were maintained within acceptable
limits. No TCS failures or in-flight anomalies were noted. The beta angle ranged
from -15.0 degrees at orbital insertion to +36.2 degrees at El.

Thermal analyses were made to evaluate changes to the planned attitude
timelines (ATLs). Eight revisions to the planned ATLs were analyzed and
assessed based on inputs from the flight control team to provide altemate
attitudes for increased water production and improved main landing gear (MLG)
tire temperature margins at El. In these analyses, the bending effects temperature
(BET) was predicted to approach but not exceed the 200 °F limit during +Z solar
inertial (bottom to Sun) attitudes late in the mission.

Aerothermodynamics

The acreage heating and local heating were both nominal. The boundary layer
transition was also nominal.

Thermal Protection Subsystem and Windows

The TPS performed satisfactorily. Based on structural temperature response data
(temperature rise), the entry heating was nominal for the vehicle. Boundary layer
transition from laminar flow to turbulent flow occurred at approximately

1330 seconds after entry interface at the forward centerline of the vehicle and at
the aft centerline of the vehicle. There were no measurements or other evidence
to indicate that an asymmetric transition occurred.

Based on data from the debris inspection team, overall debris damage was
significantly less than average. Of the total of 85 impacts, only 35 were recorded
on the lower surface with only 5 having a major dimension greater than one-inch or
larger. None of impacts was identified as being caused by micrometeorites or on-
orbit debris. The following table delineates the number of hits by area of the
Orbiter.

TPS DAMAGE SITES
Orbiter Surfaces Hits > 1 Inch Total Hits

Lower Surface 5 35
Upper Surface 3 34
Right Side 0 2
Left Side 3 4
Right OMS Pod 0 5
Left OMS Pod 1 5
Total 12 85
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The largest lower surface tile damage site was located aft of the ET/Orbiter
umbilicals and measured 3.2 inches long by 1.25 inch wide with a maximum depth
of 0.5 inch. The most likely cause of the damage was an impact of ice from the
umbilicals. The tile damage sites aft of the LH, and LO; ET/Orbiter umbilicals,
usually caused by impacts from umbilical ice or shredded pieces of umbilical purge
barrier material flapping in the air stream, were less than usual in number and
size.

One lower body flap tile sustained a large damage that measured 2.0 inches by
1.5 inches by 0.2 inch deep. The upper body flap RCS vernier engine
impingement area had one large damage area. Also, several main landing gear
door thermal barriers were frayed and two were breached.

The SSME 1 dome mounted heat shield (DMHS) closeout blankets were frayed at
the 5:00 o’clock position and torn at the 7:00 o'clock position. Severe tearing and
fraying of the SSME 3 DMHS blankets occurred from the 7:00 to 12:00 o’clock
position. The SSME 2 DMHS blankets were undamaged.

Tiles on the vertical stabilizer stinger were intact and undamaged. However, one
tile at the +Y -Z corner of the drag chute cavity was chipped. Damage to
approximately 50 percent of one tile on the trailing edge of the left
rudder/speedbrake was not related to drag chute deployment. A damage cavity,
or tunnel, in the X direction in the inboard side of the tile may indicate a debris
impact due to exhaust plume recirculation during ascent.

No ice adhered to the payload bay door. The reddish-brown discoloration on the
leading edge of the left-hand payload bay door had not changed in appearance
from the previous flight. No unusual tile damage was observed on the leading
edges of the vertical stabilizer and OMS pods.

An unusual finding was tile damage on the upper surface of the left wing near the
leading edge but aft of the reinforced carbon carbon (RCC) panels. The damage
site measured approximately 5 inches long by 0.75 inch wide by 0.125 inch deep,
and the damage was oriented in the longitudinal (-X) direction.

Hazing and streaking of Orbiter windows 2, 3, and 4 was typical. Damage sites on
the window perimeter tiles (five hits on window 2; five hits on window 3; and four
hits on window 4) were determined to be new damage sites. Numerous other
damage sites were attributed to old repair material flaking off. A tile between
windows 3 and 4 had a damage site 2 inches long by 1 inch wide by 0.125 inch
deep.
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FLIGHT CREW EQUIPMENT/GOVERNMENT FURNISHED EQUIPMENT

The flight crew equipment/Government furnished equipment performed
acceptably. At the flight crew debriefing, the crew noted that the galley dispensed
some air into the first water draw each morning, but the condition was not
significant and does not require corrective action. Three in-flight anomalies
identified during the mission, and none impacted the mission. These are
discussed in the following paragraphs.

At 175:19:27 G.m.t. (03:04:38 MET), the ground was unable to command the
closed-circuit television (CCTV) camera A focus (Flight Problem STS-78-F-01).
The camera was usable and produced a clear picture for a wide field of view. The
camera was power cycled several times in an unsuccessful attempt to regain
control of the focus. At 179:08:33 G.m.t. (06:17:44 MET), after the camera had
been left on for more than eight hours and the telemetry-indicated temperature
had risen to +33 °C, the focus mechanism began working properly. The camera
temperature was 8 °C during the failed attempt to focus.

At 178:13:49 G.m.t. (05:23:00 MET), the crew reported that a threaded fastener
that secured the ergometer to its frame was broken and that another threaded
fastener was sheared (Flight Problem STS-78-F-02). The remaining two fasteners
were loose. The crew replaced the broken fasteners with the two spare fasteners
and tightened the two loose fasteners. The crew was told to tighten all four
fasteners prior to each exercise session. A similar ergometer failure was
experienced during a previous mission (STS-65).

At approximately 185:10:50 G.m.t. (12:20:01 MET), the crew reported that the
wireless function of audio interface unit (AlU) E in the Spacelab was not operating
on either frequency in any mode (Flight Problem STS-78-F-03). However, the
hard-line function of the AlU operated nominally as did both functions of the
alternate AlU in the Spacelab (AIU D) and the three AlUs in the Orbiter. The crew
reported that the communication configuration in the Spacelab was acceptable,
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N——

CARGO INTEGRATION

The integration hardware performance was nominal throughout the mission, with
no issues or in-flight anomalies identified.
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DEVELOPMENT TEST OBJECTIVES/DETAILED SUPPLEMENTARY
OBJECTIVES

DEVELOPMENT TEST OBJECTIVES
The Development Test Objectives individually in the following paragraphs.

DTO 301 D - Ascent Structural Capability Evaluation - This DTO was data-only,
with the data being recorded on the modular auxiliary data system (MADS)
recorder. The data were dumped from the recorded after landing and were given
to the sponsor for evaluation. The results of the evaluation will be reported in
separate documentation.

DTO 307D - Entry Structural Capability - This DTO was data-only, with the data
being recorded on the MADS recorder. The data were dumped from the recorded
after landing and were given to the sponsor for evaluation. The results of the
evaluation will be reported in separate documentation.

DTO 312 - ET TPS Performance (Methods 1 and 3) - Photography of the ET after
separation was acquired, following the pitch maneuver, with the Nikon 35 mm
camera with a 300 mm lens and a 2X extender (method 1). A total of 38 excellent
quality views of the ET were on roll 457. All aspects of the ET were imaged, and
timing data were on the film. The first picture was taken approximately 14 minutes
after liftoff, and the final picture was taken 9 minutes 12 seconds later. The aero-
heating marks and the booster-separation motor burn scars were typical of
previous missions. No ET anomalies were noted in the film. Mission Specialist 1
took the 35 mm camera pictures, and Mission Specialist 2 provided coverage
using the camcorder.

Three rolls of umbilical-well camera film were exposed during ascent; two rolls
from the 16 mm camera and one roll from the 35 mm camera (method 3). All of
the film had good focus, and the exposures were good except for the backlighting
by the Sun during the ET separation sequences. Good coverage of the left SRB,
as well as good coverage of the ET separation were acquired on the 16 mm film.
No anomalous conditions were noted from the 16 mm film. The 35 mm film
showed that two of the five lightning contact strips were missing from the
ET/Orbiter LO, umbilical interface plate. This condition has been observed on

previous flights, as recently as STS-77. No anomalous conditions were observed
on the 35 mm film.

DTO 319D - Shuttle/Payload Low Frequency Performance - This DTO was data-
only, with the data being recorded on the MADS recorder. The data were dumped
from the recorded after landing and were given to the sponsor for evaluation. The
results of the evaluation will be reported in separate documentation.
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DTO 416 - Water Spray Boiler Quick Restart - This DTO was successfully
completed and demonstrated acceptable restart capability. The detailed results of
this DTO will be documented in other publications.

DTO 623 - Cabin Air Monitoring - Cabin air conditions were measured as required
during the flight. These data have been given to the sponsor for evaluation. The
results of the evaluation will be presented in a separate document.

DTO 667 - Portable In-Flight Landing Operations Trainer (PILOT) - The
Commander and Pilot successfully used the PILOT software to maintain
performance levels of training for entry and landing during the 17-day flight. All
equipment and software functioned satisfactorily during the mission. The overall
results of this DTO will be presented in separate documentation.

DTO 675 - Voice Control of Closed Circuit TV System - This DTO provided a voice
recognition system that interfaced with the Shuttle CCTV system and enabled
voice commanding of the payload bay cameras. The Commander and Pilot
exercised the interface several times during the flight. The system worked
excellently and was capable of adapting the complex human voice patterns into
camera commands. Discussions of the results of this DTO will be published in
separate documentation.

DTO 837 - Vernier RCS Reboost Demonstration/Test No. 3 - All three parts of
DTO 837 - Vernier RCS Reboost - were performed satisfactorily. Vernier thruster
operation was nominal during the DTO performance. This test successfully
demonstrated the satisfactory use of the RCS vernier thrusters to perform a
translation AV reboost of the Orbiter/ Hubble Space Telescope during the
upcoming STS-82 mission. Data analysis is continuing to determine if this method
will offer a clean separation after payload deployment/servicing. The results of the
analysis will be published in separate documentation.

DTO 1126 - KCA Video Teleconferencing - This DTO provided the capability for
the Mission Control Center (MCC) and personnel onboard the Orbiter to conduct
video teleconferences using the Shuttle Payload and General Support Computer
(PGSC). This DTO was extremely successful and was even used for uplinking a
video-taped IFM procedure that was partially instrumental in the repair of the
BDPU -15 volt power supply. Numerous daily video conferences were conducted.
These activities included private medical conferences, personal family
conferences, and management demonstrations. The small right-angle camera
provided as a part of this DTO was used to provide excellent in-cabin views of the
crew during launch and during landing.

DETAILED SUPPLEMENTARY OBJECTIVES

Data were collected as required for the Detailed Supplementary Objectives
(DSOs). These data have been given to the sponsors for evaluation, and the
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results of the evaluation will be reported in separate publications. The DSOs
assigned to the STS-78 mission were as follows:

a. DSO 331 - LES and Sustained Weightlessness (Commander and Pilot
Only);

b. DSO 487 - Immunological Assessment of Crew;

c. DSO 491 - Microbial Transfer Among Crew;

d. DSO 493 - Latent Virus Shedding (Commander and Pilot Only);
e. DSO 802 - Educational Activities (Option 1 and 2);

f. DSO 901 - Documentary Television: and

g. DSO 903 - Documentary Still Photography.
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PHOTOGRAPHY AND VIDEO DATA ANALYSIS

LAUNCH PHOTOGRAPHY AND VIDEO DATA ANALYSIS
The launch photography and video data were screened, and no anomalous
conditions were noted. A total of twenty-four 16 mm and twelve 35 mm films plus
24 videos of the launch were screened and analyzed.
ON-ORBIT PHOTOGRAPHY AND VIDEO DATA ANALYSIS

No on-orbit photography or video data were analyzed as no conditions occurred
that required analysis.

LANDING PHOTOGRAPHY AND VIDEO DATA ANALYSIS
Twelve videos of landing operations were screened and no anomalous conditions

were noted. In addition, a video of out-the-pilot-window conditions during entry
and landing was also reviewed.
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TABLE I.- STS-78 SEQUENCE OF EVENTS

LH HPU System B start command
RH HPU System A start command
RH HPU System B start command

Event Description Actual time,
G.m.t.
APU Activation APU-1 GG chamber pressure 172:14:44:10.417
APU-2 GG chamber pressure 172:14:44:11.340
APU-3 GG chamber pressure 172:14:44:12.262
SRB HPU Activation® LH HPU System A start command 172:14:48:32.089

172:14:48:32.249
172:14:48.32.409
172:14:48:32.569

Main Propulsion System
Start®

ME-3 Start command accepted
ME-2 Start command accepted
ME-1 Start command accepted

172:14:48:53.458
172:14:48:53.577
172:14:48:53.687

SRB Ignition Command

Calculated SRB ignition command

172:14:49:00.019

ME-3 Command accepted

(Liftoff)
Throttle up to 104 Percent ME-2 Command accepted 172:14:49:04,128
Thrust® ME-1 Command accepted 172:14:49:04.128

172:14:49:04.149

Throttle down to
67 Percent Thrust®

ME-2 Command accepted
ME-1 Command accepted
ME-3 Command accepted

172:14:49:34.048
172:14:49:34.048
172:14:49:34.070

Maximum Dynamic Pressure

(@)

Derived ascent dynamic pressure

172:14:49:49

Throttle up to 104 Percent®

ME-2 Command accepted
ME-1 Command accepted
ME-3 Command accepted

172:14:49:59.968
172:14:49:59.969
172:14:49:59.990

Both SRM’s Chamber
Pressure at 50 psi®

RH SRM chamber pressure
mid-range select

172:14:50:58.539

mid-range select

LH SRM chamber pressure 172:14:50:58:739
mid-range select

End SRM 2 Action® RH SRM chamber pressure 172:14:51:00.499
mid-range select

LH SRM chamber pressure 172:14:51:00.909

SRB Physical Separation®

LH rate APU turbine speed - LOS
RH rate APU turbine speed - LOS

172:14:51:03.699
172:14:51:03.699

SRB Separation Command

SRB separation command flag

172:14:51:04

Throttle Down for
3g Acceleration®

ME-2 command accepted
ME-1 command accepted
ME-3 command accepted

172:14:56:30.374
172:14:56:30.378
172.14:56:30.398

3g Acceleration

Total load factor

172:14:56:32.1

Throttle Down to
67 Percent Thrust®

ME-2 command accepted
ME-1 command accepted

172:14:57:22.854
172:14:57:22.859

for Cutoff ME-3 command accepted 172:14:57.22.879
SSME Shutdown® ME-2 command accepted 172:14:57:29.334
ME-1 command accepted 172:14:57:29.339
ME-3 command accepted 172:14:57:29.359
MECO MECO command flag 172:14:57:30
MECO confirm flag 172:14:57:31
ET Separation ET separation command flag _ 172:14:57:49

APU Deactivation

APU-1 GG chamber pressure
APU 2 GG chamber pressure
APU 3 GG chamber pressure

172:15:05:47.289
172:15:05:55.423
172:15:06:04.411

*MSFC supplied data
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TABLE l.- STS-78 SEQUENCE OF EVENTS

(Concluded)
Event Description Actual time, G.m.t.

OMS-1 Ignition Left engine bi-prop valve position Not performed -

Right engine bi-prop valve position direct insertion

trajectory flown

OMS-1 Cutoff Left engine bi-prop valve position

Right engine bi-prop valve position
OMS-2 ignition Left engine bi-prop valve position 172:15:30:28.6

Right engine bi-prop valve position 172:15:30:28.7
OMS-2 Cutoff Left engine bi-prop valve position 172:15:32:26.6

Right engine bi-prop valve position

172:15:32:26.7

Payload Bay Doors (PLBDs) PLBD right open 1 172:16:08:07
QOpen PLBD left open 1 172:16:09:28
Port Radiator Deployment Port Radiator Deploy 2 174:18:12:53
Starboard Radiator Starboard Radiator Deployment 1 185:17:04:20
Deployment
Flight Control System
Checkout
APU Start APU-2 GG chamber pressure 188:08:49:56.285
APU Stop APU-2 GG chamber pressure 188:08:54:59.393
Starboard Radiator Stow Starboard Radiator Latch 7-12 Latch 2 | 188:13:28:53
Port Radiator Stow Port Radiator Latch 7-12 Latch 2 188:13:28:53
Payload Bay Doors Close PLBD left close 189:08:58:28
PLBD right close 189:09:00:26

APU Activation for Entry

APU-2 GG chamber pressure
APU-1 GG chamber pressure
APU-3 GG chamber pressure

189:11:31:32.530
189:11:51:38.275
189:11:51:39.875

Deorbit Burn Ignition

Left engine bi-prop valve position
Right engine bi-prop valve position

189:11:36:36.1
189:11:36:36.2

Deorbit Burn Cutoff

Left engine bi-prop valve position
Right engine bi-prop valve position

189:11:39:18.5
189:11:39:18.6

Entry Interface (400K feet) Current orbital altitude above 189:12:04:37
Blackout end Data locked (high sample rate) No blackout
Terminal Area Energy Mgmt. Major mode change (305) 189:12:30:15
Main Landing Gear LH main landing gear tire pressure 1 189:12:36:35
Contact RH main landing gear tire pressure 2 189:12:36:35
Main Landing Gear LH main landing gear weight on 189:12:36:36
Weight on Wheels wheels 189:12:36:36

RH main landing gear weight on
wheels

Drag Chute Deployment

Drag chute deploy 1 CP Volts

189:12:36:39.9

Nose Landing Gear NLG 1 RH tire pressure 1 189:12:36:48
Contact

Nose Landing Gear NLG no weight on wheels 189:12:36:48
Weight on Wheels

Drag Chute Jettison Drag chute jettison 1 CP Volts 189:12:37:11.7

Wheel Stop Velocity with respect to runway 189:12:37:31

APU Deactivation

APU-1 GG chamber pressure
APU-2 GG chamber pressure
APU-3 GG chamber pressure

189:12:51:18.778
189:12:51:23.624
189:12:51:28.046
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DOCUMENT SOURCES

In an attempt to define the official as well as the unofficial sources of data for this
mission report, the following list is provided.

Flight Requirements Document
Public Affairs Press Kit
Customer Support Room Daily Science Reports
MER Daily Reports
MER Mission Summary Report
MER Problem Tracking List
MER Event Times
Subsystem Manager Reports/Inputs
MOD Systems Anomaly List

. MSFC Flash Report

. MSFC Event Times

. MSFC Interim Report

. Crew Debriefing comments

. Shuttle Operational Data Book
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ACRONYMS AND ABBREVIATIONS

The following is a list of the acronyms and abbreviations and their definitions as these items
are used in this document.

A/D analog to digital converter

AlU audio interface unit

APU auxiliary power unit

ARPCS atmospheric revitalization pressure control system
ARS atmospheric revitalization system
ASA aerosurface actuator

ATCS active thermal control system
ATL attitude time line

BDPU Bubble, Drop, and Patrticle Unit
BET bending effects temperature
BFC backup flight controller

BFS backup flight system

BITE built-in test equipment

BRIC Biological Research in Canisters
CCTV closed circuit television

cc cubic centimeter

c.d.t. central daylight time

CDR Commander

CEl contract end item

CO, carbon dioxide

DMHS dome-mounted heat shield

DSO Detailed Supplementary Objective
DTO Developmental Test Objective
DVM Doctor of Veterinary Medicine
AP differential pressure

AV differential velocity

ECLSS environmental control and life support system
ECO engine cutoff

EDO Extended Duration Orbiter

El entry interface

EMI electromagnetic interference
EPDC electrical power distribution and control subsystem
ET External Tank

FA flight critical aft

FCE flight crew equipment

FCL Freon coolant loop

FCS flight control system

FCV flow control valve

FDA fault detection and annunciation
FES flash evaporator system

FIV fuel isolation valve

FM frequency modulation

ft/sec feet per second

g gravity

B-1



GFE Government furnished equipment

GH> gaseous hydrogen

G.m.t. Greenwich mean time

GN; gaseous nitrogen

GO, gaseous oxygen

GPC general purpose computer

H, hydrogen

HGDS hazardous gas detection system

HIPOT high potential

HISAM hardware-initiated stand-alone memory

HPFTP high pressure fuel turbopump

HPOTP high pressure oxidizer turbopump

IFM in-flight maintenance

170 input/output

Isp specific impulse

KCA Ku-band communications adapter

keas knots estimated air speed

KSC Kennedy Space Center

kW kilowatt

kWh kilowatt hour

Ib pound

Ib/hr pound per hour

Ibm pound-mass

Ib/min pound per minute

LCC Launch Commit Criteria

LH, liquid hydrogen

LMES Lockheed Martin Engineering and Science Company

LMS Life and Microgravity Sciences

LO, liquid oxygen

MADS modular auxiliary data system

MCC Mission Control Center

MDM multiplexer-demultiplexer

MECO main engine cutoff

MET mission elapsed time

MLG main landing gear

MMA Microgravity Measurement System

MPS main propulsion system

MPU magnetic pickup unit

ms millisecond

MSFC Marshall Space Flight Center

nmi. nautical miles

NPSP net positive suction pressure

NSTS National Space Transportation System (i.e., Space Shuttle Program)

OARE Orbital Acceleration Research Experiment

OMDP Orbiter Maintenance Down Period

OMRSD Operations and Maintenance Requirements and Specifications
Document

OMS orbital maneuvering subsystem

OSH off-scale high

PAL protuberance air load



PASS
PDU
PGSC
PILOT
PMBT
PPCO;
ppm
PPOV-CAM
PRSD
psia
psid
RCC
RCRS
RCS
RSRM
RTV
SAMS
SAREX-II
S&A
SCu
SLF
SODB
SRB
SRSS
SSME
TCE
TCS
TDRS
TPS
Vde
WCS
WSB

primary avionics software system
power drive unit

payload and ground support computer
Pilot Operated Landing Operations Trainer
propellant mean bulk temperature
partial pressure carbon dioxide
parts per million

Pilot Point of View Camera

power reactant storage and distribution
pound per square inch absolute
pound per square inch differential
reinforced carbon carbon
regenerative CO, removal system
reaction control subsystem

Reusable Solid Rocket Motor

room temperature vulcanizing

Shuttle Acceleration Measurement System
Shuttle Amateur Radio Experiment-li
safe and arm

sequence control unit

Shuttle Landing Facility

Shuttle Operational Data Book

Solid Rocket Booster

Shuttle range safety system

Space Shuttle main engine
condenser exit temperature

thermal control subsystem

Tracking and Data Relay Satellite
thermal protection subsystem

Volts direct current

Waste Collection System

water spray boiler
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